
®

by Microdata

Bisync
Operator's Guide

LET'S COMMUNICATE

Microdata is interested in your experiences with our products

in use. Let us know about

New applications

New techniques

Modifications

Changes

Corrections

Anything appropriate

Users of Microdata hardware, software and computer-related

documents are regularly developing appropriate changes or new

applications for our products. We like to know about them.

Often, we can help you develop or improve a new idea. Or, you

can help us with a change. It is our policy to regularly com

municate appropriate new ideas and applications to the users of

our products. Let us be helpful. Let's communicate.

Attn: Marketing Technical Support
MICRODATA CORPORATION
17481 Red Hill Avenue, Irvine, CA 92714
Post Office Box 19501, Irvine, CA 92713
Phone: 714/540-6730
TWX: 910-595-1764

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the written authorization of Microdata Corporation,

©1977 Microdata Corporation
All Rights Reserved
TM -Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in U,S.A.

Price: $10.00
••

(3.0 SERIES)

Bisync
Operator's Guide

771043

Microdata Cor~oration
17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 . TWX: 910-595-1764

Title

INTRODUCTION
INTRODUCTION
TRANSMISSION METHODS
TRANSMISSION CODES
TRANSMISSION LINKS
DATA LINKS
COMMUNICATION PROTOCOLS

REALITY BISYNC
OVERVIEW OF REALITY BISYNC
BISYNC MESSAGES
TRANSMIT VERB
TRANSMIT VERB OPTIONS
START-BSC VERB
RESTART-BSC VERB
ABORT-BSC AND STOP-BSC VERBS
THE FILE-MESSAGE VERB
OPTIONS OF THE FILE-MESSAGE VERB
SPOOL-MESSAGE VERB
DISPLAY-MSG-QUE

CONTENTS

DUMP-MESSAGE, DISPLAY-MESSAGE AND KILL-MESSAGE VERBS
DATA LINK CONTROL CHARACTERS
DATA-LINK CONTROL CHARACTERS - TRANSMISSION CONTROL
DATA-LINK CONTROL CHARACTERS - TEXT CONTROL
DATA-LINK CONTROL CHARACTERS - MISCELLANEOUS
TIMEOUTS

MODEMS
MODEMS

EXAMPLES
TRANSMITTING A REALITY FILE
RECEIVING A REALITY FILE
TRANSMITTING REALITY ASSEMBLER OUTPUT
RECEIVING REALITY ASSEMBLER OUTPUT
OPERATING WITH JCL: Transmitting a Ditto Job to an IBM 360

Operating Under DOS/Power
OPERATING WITH JCL: Receiving a Ditto Job From an IBM 360

Operating Under DOS/Power
OPERATING IN THE ATTENDED MODE

TROUBLESHOOTING
TROUBLESHOOTING

Topic

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1

4.1
4.2
4.3
4.4

4.5

4.6
4.7

5.1

1.1 INTRODUCTION

The major function of Binary Synchronous Communication (Bisync) is to effect
the orderly transfer of large amounts of data from one location to another
using communications facilities.

Data is transferred as binary-coded characters comprising text information and
is blocked for transmission. In addition, data-link control characters are
required with each transmission to delimit various portions of the text infor
mation and to control the communications line.

Reality Bisync is an emulation of the IBM 2780 Data Transmission Terminal. The
Process can be used to transmit Reality file items at communications line speed
to another Reality or any other machine following the IBM 2780 Bisync Protocol.

Reality Bisync incorporates many of the optional features of an IBM 2780 as
standard features. Some of the special features are listed in Figure A.

The first section of this manual is a general discussion of data communications.
The remaining sections describe the operation of Reality Bisync.

eNormal EBCDIC Transmission

eTransparent EBCDIC Transmission

eTransparent ASCII Transmission

eMultiple Record Blocks

eExtended Retry Feature

eAuto Answer

Figure A. Standard Features of Reality Bisync

1.1

1.2 TRANSMISSION METHODS

Two classifications of data communications used by the computer industry are
asynchronous and synchronous. Binary Synchronous Communication incorporates
synchronous data communication.

Asynchronous Transmission

In asynchronous transmission, synchronizing bits (one 'start' and,one or two
'stop' bits) are sent with each byte that is transmitted. The start bit signals
that a character is coming and enables the receiving station to become synchro
nized with the transmitting station at the beginning of each character. Since
sync bits accompany each character transmitted, asynchronous transmission can
occur at irregular intervals. Thus, asynchronous transmission is well suited
to low volume transmission.

The advantage of asynchronous transmission is the simplicity of the modems,
making the cost of transmission minimal. However, since each character must
have associated start and stop bits, overhead is high, making the system ineffi
cient for high volume transmission.

Synchronous Transmission

with this method of transmission; characters are blocked and sent at a definite
frequency. This eliminates start and stop bits as signals of when characters
are being sent. Synchronizing characters are required only at the beginning
of each block of data. The sync characters establish the required time base
for »lacing the receiver and transmitter in step. Once the receiver and trans
mitter are in step, the entire block may be transmitted. Normally, since large
blocks of data are being transmitted, various types of block checking routines
are used to validate the data.

Usually associated with synchronous transmission is the use of special line
control characters to signal beginning and ending of text, and identify any
special data control characters that are being used.

Binary Synchronous Transmission

Binary Synchronous Communications (Bisync)
tocol used in IBM communications systems.
ard protocol for data transmission.

is a specific communications pro
Bisync has become an industry stand-

Bisync is built around sending blocks of data and the use of a specified set of
control characters to identify beginning and ending of data, control the line,
respond to data, and perform error checking. If data is received correctly, the
receiving station responds with a positive acknowledgment using an 'ACK' char
acter. A 'NAK' character is used as a negative acknowledgment.

This page intentionally blank

1.2

1.3 TRANSMISSION CODES

The major function of Bisync is to effect the orderly transfer of data from
one location to another using communications facilities. Bisync procedures
can accommodate three transmission codes. These codes may be expanded when
using the transparent mode.

All data in Bisync is transferred as binary-coded characters comprising text
information. In addition, data-link control characters are required to delimit
various portions of the data and control its transmission. The data and con
trol characters make up a transmission message, with the data being the body
of the message.

Bisync can accommodate three specific transmission code sets. Each set con
sists of data characters, function characters (e.g., tabs and form control),
and line control characters. The transmission code sets are listed in Figure A.

In the normal mode of transmission, the control characters and function char
acters may not be transmitted as data characters within the body of the message.
However, if using the "transparent" mode, these characters may be transmitted
as data. Transparency is described below. The transmission codes supported in
Reality Bisync are EBCDIC, transparent EBCDIC, and a type of transparent ASCII
the ASCII facilitates transmission between Reality systems - data transmitted
is in ASCII and line control characters are in EBCDIC.

Transparency

Transparency is actually part of a line protocol. When used with ASCII, EBCDIC
or Six-Bit Trans Code, transparency permits greater versatility in the range of
coded data that can be transmitted. This is because all data, including the
normally restricted data-link control characters, are treated only as specific
'bit patterns.' All data link control characters can be transmitted as trans
parent data without taking on control meaning.

Any data-link control characters transmitted in the transparent mode are pre
ceded by a DLE character. This identifies them as a control function. A DLE
data character is identified as data by a preceding DLE (DLE DLE). A detailed
discussion of data-link control characters and sequences is given in Sections
2.13 through 2.16.

EBCDIC
ASCII
Six-Bit Transcode
Transparency

Figure A.

256 Assignment Positions
128 Assignment Positions

64 Assignment Positions
Used with the above codes,
gives added flexibility.

Transmission Codes

1.3

1.4 TRANSMISSION LINKS

The data transmission link consists of equipment provided by a common carrier,
such as AT&T. The three transmission modes are simplex, half duplex, and
full duplex. The link may be over a private, leased line, or the public
switched network. Modems are required at each end of the link, and are dis
cussed in Section 3.

Various types of transmission links are available. The basic equipment re
quired for the link is the telephone line between the stations and the modems
for each station. Modems are discussed in Section 3 of this manual. Some
physical considerations on the telephone line are discussed in the following
paragraphs.

Simplex

In the simplex mode, data is transmitted in only one direction. Therefore,
the transmitter is always the transmitter, the receiver always the receiver.
Simplex is a two-wire physical configuration. Figure A illustrates a simplex
link.

Half Duplex

Half duplex may have two physical configurations, two-wire or four-wire. Half
duplex two-wire has one wire for send and one for receive. Half duplex four
wire has two wires for send and two for receive. In either configuration,
transmission in both directions is not simultaneous. The line must be 'turned
around' between send and receive sequences. Some of the modems available offer
a lower line turnaround time with the four-wire configuration, or require the
four-wire configuration for use with private line service. Figure B illustrates
half duplex.

Reality Bisync, operating under 2780 emulation, uses the half duplex mode.

Full Duplex

Full duplex may also have a two-wire or four-wire physical configuration. In
full duplex, transmission may be simultaneous in both directions. In the two
wire configuration, each wire is set up to send or receive. In the four-wire
configuration, two wires are set up to send and two to receive. Figure C il
lustrates full duplex. Reality Bisync cannot be full duplex.

Switched Network

The switched (or dial-up) link is over the regular telephone network. With
this type of data link, a Data Access Arrangement (DAA) is required from the
local telephone company. The DAA is a special dial-up telephone that inter
faces with the modem. When initiating communications, the user dials up the
other station, the call goes over the regular switched network, the call is
answered at the other station, and communications may begin.

Private Line

With a private line setup, the telephone line is dedicated for use by the com
munications link and does not go through the switched telephone network. A
dial-up DAA set is not required for a private line, although alternate voice
capability is an option on most modems. Usually, the Request-To-Send signal
is continuous. Options are available on some modems to also have the data-set
ready signal continuous. When initiating communications, no dial-up is re
quired. As soon as the transmitting station receives a clear-to-send from the
receiving station, transmission may begin.

Transmission in One Direction Only

Figure A. Simplex

I~ ·1

Transmission in One Direction at a Time
(Acknowledges Go In Opposite Direction)

Figure B. Half Duplex

I: 2-wire ~
=r======= 4-Wire~1=
Simultaneous Transmission in Both Directions

Figure C. Full Duplex

1.4

1.5 DATA LINKS

The two basic types of data links are point-to-point and multipoint.

Point-to-Point

A point-to-point data link involves two stations. When a station desires to
use the communications line, the station bids for the line by using a specified
sequence of line control characters.

In point-to-point operation a contention situation exists, whereby both sta
tions may attempt to use the communications line simultaneously. If simul
taneous bidding occurs, one station must persist in its bidding attempt to
break the contention condition. Once a station gains control of the line,
transmission may begin.

To minimize the possibility of a contention situation, one station on the line
is ge~erally considered the primary station and the other the secondary station.
The distinction between a primary and a secondary station is normally made by
specifying different receive timeout periods for each. For example, the secon
dary might be configured to transmit a bid for the line every three seconds,
while the primary is configured to bid every one second. In effect, this gives
the primary station precedence.

A point-to-point data link can be on a switched (dial-up) network or on a
private line setup. Figure A shows a point-to-point setup.

Multipoint

A multipoint data link involves two or more stations. In this environment,
one station is always the primary station and the others are secondary sta
tions'. The primary station either polls or selects the secondary stations.
Polling is an "invitation to send" transmitted from the primary station to a
specific secondary station. Selection is a "request to receive" notification
from the primary station to one of the secondary stations, instructing it to
receive data. This allows the primary station to control the data link.

Each station in the data link is assigned a unique address which is used to
acquire the station's attention during either a polling or selection sequence.
Station addresses consist of from one to seven characters.

A multipoint data link requires a dedicated private line for the transmission
link. Figure B shows a sample layout of a multipoint setup.

SECONDARY PRIMARY
STATION STATION

Figure A. Point-to-Point Data Link

PRIMARY SECONDARY
STATION STATION

SECONDARY SECONDARY
STATION STATION

Figure B. Multipoint Data Link

1.5

1.6 COMMUNICATION PROTOCOLS

The 2770, 2780, and 3780 Communication Protocols are derived from the data I/O
terminals of the same designation as marketed by IBM.

2780 Protocol

The 2780 Protocol has been in existence since 1967. It was the first IBM ter
minal to use bisynchronous communication. The 2780 Data Terminal is primarily
a card reader/punch, and also functions as a printer station. The cards are
80 columns wide, leading to the standard 80 character record size. Bisync
allows data to be transmitted to such a station at a high data rate with a
low probability of errors. This is because of the blocking of card images
and print lines.

The main limitations of 2780 Protocol are the fixed block length, the lack of
a conversation mode, and the limited input/output device selection.

2770 Protocol

The 2770 Protocol was developed after 2780. It allows 96-column records and
was designed to work with a variety of data station devices. A 2780 option
is conversational mode. This means that the terminal can accept a response
to an inquiry without first being selected. This allows it to run acceptably
fast in an inquiry mode.

3789 Protocol

The 3780 Protocol will run faster (7200 bps versus 4800 bps for the 2780).
Variable length records are standard on the IBM 3780, and it allows conver
sational mode. The biggest drawback is the lack of programmability.

Figure A is a comparison of some of the standard and optional features of 2780,
2770, 3780, and Reality Bisync.

2770 2780 3780 REALITY

STAND- OP- STAND- OP- STAND- OP- STAND- OP-
FEATURE ARD TION ARD TION ARD TION ARD TION

EBCDIC X X X X

TRANSPARENCY X X X X

120 CHARACTER INPUT X X X X

RECORD *

140 CHARACTER INPUT X X X X

RECORD*

MULTIPLE RECORDS PER X X X X

BLOCK

VARIABLE LENGTH X X X X

RECORDS

AUTO ANSWER X X X X

AUTO LINE TURNAROUND X X X X

PRINTER HORIZONTAL X X X X

FORMAT CONTROL*

CONVERSATIONAL MODE X X

1200 - 4800 BAUD X X X X

1200 - 7200 BAUD X X

1200 - 9600 BAUD X

*STANDARD FEATURE ON 2770 BASED ON CONFIGURATION ORDERED.

Figure A. Comparison of Some Features

1.6

2.1 OVERVIEW OF REALITY BISYNC

The Reality Binary Synchronous Communications Process (Bisync) is a unique
portion of the system software that is designed to support data communica
tions in the Reality multi-user virtual memory operating system.

Reality Bisync is an emulation of the IBM 2780 Data Communications Terminal.
It may be used to transmit (or receive) data to another Reality or any other
machine that supports IBM 2780 communications protocol.

2602 Controller

The 2602 Bisync Controller board is the only additional hardware required on a
Reali ty system to interface with the data link equipment.

Process Assignment

The Bisync Process may be assigned to any line (terminal) in the system and
controlled from any or all of the remaining terminals. When Bisync is assigned
to a line, the terminal attached to that line is dedicated to the process and
may not be used for any other purpose until Bisync has been deactivated. The
terminal attached to the line becomes the Bisync console.

When Bisync is activated, the current status of the Process is displayed on
the terminal. Status messages include such things as telephone line connec
tion, line failures, blocks received and transmitted, transmission errors, etc.

Bisync Verbs

Since Bisync is a unique software process, there is a complete set of verbs
supplied to control the Process's modes of operation and communicate with it.
These verbs are summarized in Figure A, and are discussed in detail in the
following sections of this chapter.

Transmission Data

All data in Bisync is transmitted over the data link as binary-coded characters
which comprise a text message (see Section 2.2 for a detailed discussion of
messages). A message may consist of one or more items, or an entire file.
Reality file items or files are structured into transmission messages via the
TRANSMIT verb (see Section 2.3), and may be readied for transmission before or
after the Bisync Process is activated.

Bisync Queue

Messages formed by the TRANSMIT verb are put in the Bisync queue. The Bisync
queue is similar to the Reality Spooler queue. It is a temporary storage area
to hold the structured messages, either received messages or messages waiting
to be transmitted, and is not saved by the FILE-SAVE process. The messages

have a four-digit message number in the range 0000 to 9999. When Bisync is
activated, the messages in the queue are transmitted in ascending order of
message numbers.

Terminates transmission or reception of a message
Displays specified message in character format
Displays Bisync message queue
Displays specified message in hex format
Files messages into Reality file i t.ems
Deletes specified message from Bisync queue

ABORT-BSC
DISPLAY-MESSAGE
DISPLAY-MSG-QUE
DUMP-MESSAGE
FILE-MESSAGE
KILL-MESSAGE
RESTART-BSC
SPOOL-MESSAGE
START-BSC
STOP-BSC
TRANSMIT

Restarts Bisync after abnormal condition (attended mode)
Outputs message via Reality spooler

REALITY
FILES

USER'S
PROCESS

REALITY SYSTEM 1

Activates the Bisync process
Stops the Bisync process
Formats Reality file items into transmission messages

Figure A. Bisync Verbs

BISYNC
QUEUE

BISYNC
PROCESS

260Z
BOARD

MODEM

DATA
LINK

REALITY
OUTPUT

BISYNC
QUEUE

BISYNC
PROCESS

260Z
BOARD

MODEM

REALITY
FILES

REALITY SYSTEM 2

Figure B. Overall Diagram of Reality-to-Rea1ity Bisync Communication

2.1

2.2 BISYNC MESSAGES

All data in Bisync is transmitted over the data link as binary-coded char
acters which comprise a text message. Data link control characters are
required with each text message to delimit various portions 'of the message
and control the transmission. The body of the message may contain programs,
data, or any meaningful information that may be represented with binary
coded characters.

A structured transmission message consists of one or more blocks of text data.
Text is transmitted in blocks to provide more accurate and efficient error
control. Each block of text data is preceded by an STX (start of text) con
trol character and, except for the last block, is terminated with an ETB (end
of text block) control character. The last block of text data is terminated
with an ETX (end of text) control character.

2780 Protocol limits the block size to 400 characters including text data,
control characters, tab and vertical.forms controls, block check characters,
etc.

A transmission block is subdivided into records. In 2780 Protocol, these
records correspond to card images, with a maximum size of 80 characters per
record. Reality Bisync also limits transmission record size to 80 characters
but messages received may have records up to 140 characters (line printer width
plus control characters). When transmitting fixed length records (80 charac
ters), each record in a transmission block is terminated by an ITB (end of
intermediate transmission block) control character, except for the last record
in the block, which is terminated by an ETB. If transmitting variable length
records (0 to 80 characters), the records are terminated with an EM (end of
media) control character followed by an ITB. As with fixed length records,
the last record in a block is terminated by an ETB.

When transmitting text data in transparent mode, data link characters (STX, ITB,
ETB, and ETX) are preceded by a data link escape character (DLE). A DLE char
acter may be part of the actual text data, and is identified as being text with
a DLE following (i.e., DLE DLE).

Figure A shows an example format for normal text blocks. Figure B shows exam
ples of fixed and variable length records. Transparent text blocks are shown
in Figure C.

FIRST BLOCK LAST BLOCK

L.-_S_T_X ___ E_T_B_ ~------ ---1L_S_T_X~; __ E_T_X __J

Each Block is 400 Characters or Less

Figure A. Transmission Blocks

FIRST BLOCK

STX (--RECORD 1--) ITB
(--RECORD 2--) ITB

(--RECORD N--) ETB

Fn~ED LENGTH
RECORDS (80 CHARACTERS)

FIRST BLOCK

STX (--RECORD 1--) EM ITB
(--RECORD 2--) EM ITB

(--RECORD N--) EM ETB

VARIABLE LENGTH
RECORDS (0-80 CHARACTERS)

Figure B. Fixed and Variable Length Records

FIRST BLOCK LAST BLOCK

DLE STX (--RECORD 1--) DLE ITB DLE STX (--RECORD 1--) DLE ITB

(RECORD N--) DLE ETB (--RECORD N--) DLE ETX

Transparent Text Has Fixed Length
Records (80 characters)

Figure C. Transparent Text Blocks

2.2

2.3 TRANSMIT VERB

The TRANSMIT verb structures Reality file items into transmission messages
and enters them into the Bisync queue.

The TRANSMIT verb can structure file items or entire files. Each attribute
of an item will become a record in the message. Each record is limited to 80
characters. If an attribute is greater than 80 characters, the excess will be
truncated and lost.

The general form of the verb is:

TRANSMIT file-name item-list (options)

The item-list may consist of one or more items within the file, separated by
blanks, or an asterisk (*) to indicate all items in the file. The item(s)
or file will then be structured into a transmission message in the format
specified by the options and entered into the Bisync queue. The options are
discussed in detail in Section 2.4.

Each message formed by the TRANSMIT verb is assigned a four-digit identifica
tion number in the range 0000 to 9999. After a message is structured, Bisync
returns the message:

MESSAGE 'NNNN' ENTERED IN QUEUE

where 'NNNN' is the identification number assigned to the message. When the
Bisync process is activated, messages are transmitted in ascending order of
identification number.

Figure A shows the format of the TRANSMIT verb. Figure B shows the function
of the TRANSMIT verb. Examples of TRANSMIT verb are given in the next section.

TRANSMIT file-name item-list (options)

Figure A. TRANSMIT Verb Format

REALITY REALITY
FILE FILE

I +
TRANSMIT Verb

BISYNC BISYNC
QUEUE QUEUE

I

L_-1 I
BISYNC BISYNC
PROCESS PROCESS

L IN K

~ l:--

Figure B. Function of TRANSMIT Verb

2.3

2.4 TRANSMIT VERB OPTIONS

TRANSMIT verb options allow the selection of optional transmission features.
with no options, the default is EBCDIC-coded, variable length records up to
80 characters, and multiple records per block.

C - Transmit Transparent EBCDIC

The ASCII data within the specified item(s) or file is converted to EBCDIC
and structured into a transmission message in the transparent text mode.
Reality system delimiters will be stripped from the data. Selecting the
transparent text mode automatically selects fixed length records (F option) ,
and any short records will be padded with EBCDIC blanks to 80 characters.

F - Transmit Fixed Length Records

Records are 80 characters in size. Attributes shorter than 80 characters
will be padded with blanks to 80 characters.

M - Transmit Multiple Records Per Block (Default)

In this mode, records will be placed in transmission blocks until either seven
records are in the block or the block size exceeds 400 characters (maximum
block size for 2780). When fixed length or transparent records are being
transmitted, only four records will fit in a block.

N - Transmit Normal EBCDIC (Default)

The ASCII data within the specified item(s) or file is converted to EBCDIC and
structured into a transmission block in the normal text mode.

S - Transmit Short (Variable Length) Records (Default)

Records may be variable length, up to a maximum of 80 characters. Short re
cords (less than 80 characters) will have an EM character appended to them.
This mode is recommended when possible as it will reduce transmission time.

T - Transmit Transparent ASCII

The ASCII data within the specified item(s) or file is structured into a trans
mission message in the transparent text mode. Transparent text mode automati
cally selects fixed length records (F option), and any short records will be
padded with ASCII blanks to 80 characters. This mode should be selected when
transmitting to another Reality or transmitting Reality assembler output because
the system delimiters will not be stripped and no conversion to and from EBCDIC
is required. All data link control characters will be in EBCDIC.

x - Transmit Two Records Per Block

Each transmission block, normal or transparent text, will contain two short or
fixed length records.

Default options are N, S, and M. Therefore, if the only option specified is the
F option, the message will be structured in normal text (N option), fixed length
records (F option), and with multiple records per block (M option) .

C
F

M

N

S
T
X

*

Transmit Transparent EBCDIC
Transmit Fixed Length Records
Transmit Multiple Records Per Block*
Transmit Normal EBCDIC*
Transmit Short Records*
Transmit Transparent ASCII
Transmit Two Records Per Block

Indicates A Default Option

Figure A. Transmit Options

MESSAGE '0002' ENTERED IN QUEUE

Item 'ACCTS' formed into
Message using Default
Options -of Normal EBCDIC
(N), Short Records (S),
Multiple Records per
Block (M)

MESSAGE '0003' ENTERED IN QUEUE

MESSAGE '0010' ENTERED IN QUEUE

ACCTS File formed into
Message in Transparent
EBCDIC (C), Fixed Length
Records (F), Multiple Re
cords per Block (M)

Item 'BMAP' formed into
Message in Transparent
ASCII (T), Fixed Length
Records (F), Multiple
Records per Block (M)

Figure B. Examples of TRANSMIT Verb

2.4

2.5 START-BSC VERB

The START-BSC verb activates the Bisync process and allows selection of the
type of station (i.e., primary or secondary) and mode of operation (attended
or unattended) .

The START-BSC verb is used to activate the Bisync Process. The Bisync Process
runs on its own terminal and occupies one logical process (similar to the Re
ality output spooler). The Process is assigned to a line which is not logged
on. Bisync may be active on only one line at a time. The terminal is used as
the Bisync console for displaying messages concerning the status of the Process.

The general form of the verb is shown in Figure A. The line number is the line
to which the Bisync Process will be assigned. The message "BISYNC PROCESSOR
INITIATED" is returned to the user and to the Bisync Process's console. If the
Bisync Process has previously been started, the message "BISYNC PROCESSOR AL
READY ACTIVE" is returned to the user's terminal. The valid options for the
verb are described in the following paragraphs.

P - Primary Station

Designates the Reality system as the primary station in a communications link.
Designated as a primary station, the Reality system will send out ENQ characters
every second when bidding for the communications line and will wait one second
for the other station to reply.

S - Secondary Station

Designates the Reality system as the secondary station in a communications link.
Designated as a secondary station, the Reality system will send out ENQ charac
ters every three seconds when bidding for the communications line and will wait
three seconds for the other station to reply.

A - Attended Mode

The attended option is set when operator intervention is desired if an abnormal
condition occurs while transmitting or receiving a message. If an abnormal con
dition (such as line failure) occurs, the Process will request operator inter
vention (via a message on Bisync's console). The operator must restart Bisync
via the RESTART-BSC verb (see Section 2.6), at which time the operator may
select to restart the transmission or reception of a message either from the
point of interruption or from the beginning. This option should not be speci
fied when using the Process in an unattended, auto answer mode, as operator
intervention is then required to restart the Process.

Unattended Mode

The unattended mode is the default mode. If an abnormal condition occurs in
this mode, a partially received message is deleted from the queue and a par
tially transmitted message is retransmitted from the beginning of the message.

I ,
I
\
\

\ ,
"-

START-BSC line-number (oPttons)

~--~------------------~
A Attended
P Primary Station
S Secondary Station

Figure A. START-BSC Verb Format

Before
START-BSC

LINK

After
START-BSC

on both
systems

LINK

(Reality to Reality)

Figure B. Function of START-BSC

/
/

.",

:S.TA·RT,:;,BSCOf:Rli~ :S~~~~.:$$~~i;.{,$~!~

I
I

BISYNC PROCESSOR INITIATED BISYNC PROCESSOR INITIATED

2.5

2.6 RESTART-BSC VERB

The RESTART-BSC verb restarts the Bisync Process after an abnormal condition
occurs when operating in the attended mode (A option used with START-BSC) .

The RESTART-BSC verb is effective only when operating in the attended mode of
Bisync (see Section 2.5 - START-BSC verb). It has no effect when operating in
an unattended mode. The verb is used to restart the Bisync Process if an ab
normal condition, such as a line failure, occurs while transmitting or receiving
a message. When Bisync is in the attended mode, a condition such 'as line failure
will cause the message:

OPERATOR INTERVENTION REQUIRED

to be displayed on the Bisync console. The user must then restart the Bisync
via the RESTART-BSC ~erb. When Bisync is restarted, the message:

BISYNC PROCESS RESTARTED

is returned to the user, and Bisync is restarted with the message that was being
processed when the abnormal condition occurred.

The general form of the verb is:

RESTART-BSC (N)

Figure B shows an example of the RESTART-BSC verb. The N option is discussed
in the following paragraph.

N - New Start

The N option is the only valid option for the RESTART-BSC verb. If the N option
is specified, a partially received message is deleted and the next reception
starts a new message. During message transmission, the N option will cause the
partially transmitted message to be retransmitted from the beginning during the
next transmission.

When Bisync is restarted without the N option while transmitting, the block of
data that was being transmitted when the problem occurred is sent as the first
block of the new transmission. If Bisync is restarted (without the N option)
while receiving a message, the first block of data received after restart is
appended to the end of the partially received message.

Using the RESTART-BSC verb without the N option may lead to duplication of a
block of data, although usually not. Duplication will occur if the receiving
station received a block of data correctly but was unable to respond with a
positive acknowledgment before the abnormal condition occurred. The transmit
ting station restarts transmission with the first block of data that it did
not receive a positive acknowledgment for, thus causing duplication of one
block of data.

RESTART-BSC (N)

N = New Start

Figure A. RESTART-BSC Verb Format

:~$iJ:'~,.,,;.;msb:;@ A partially transmitted message
will be retransmitted starting

BISYNC PROCESS RESTARTED with the block following the last
block transmitted. A partially
received message is held in the
queue and the next block received
will be appended to the partially
received message.

:;lij:st~~213s~.;;;((·ij~:,~ A partially transmitted message
will be retransmitted from the

BISYNC PROCESS RESTARTED beginning. A partially received
message will be deleted from the
queue and the next block received
will start a new message.

Figure B. Example of RESTART-BSC Verb

2.6

2.7 ABORT-BSC AND STOP-BSC VERBS

The ABORT-BSC verb is used to terminate the transmission or reception of a
message. The STOP-BSC verb is used to terminate "the Bisync Process after
all transmission and reception is complete.

ABORT-BSC is used when it is desired to deactivate Bisync during transmission
or reception of a message. The general form of the verb is:

ABORT-BSC

ABORT-BSC immediately terminates the currently active transmission or reception
of a message. A message will be displayed on the user's terminal:

BISYNC PROCESSOR TERMINATED

The communications line will be disconnected and a message displayed on the
Bisync console:

BISYNC COMMUNICATIONS LINE DISCONNECTED

If a message is currently being received, further reception is stopped and the
partially received message is deleted from the queue. During message trans
mission, the transmission is stopped and the partially transmitted message is
returned to the queue.

If Bisync is not active (transmitting or receiving a message), the ABORT-BSC
verb has no effect. The message:

BISYNC PROCESS INACTIVE

will be returned to the user's terminal.

The STOP-BSC verb is used to terminate Bisync after all transmission and re
ception is complete. STOP-BSC causes the Bisync Process to be terminated.
The general form of the verb is:

STOP-BSC

The Bisync Process is terminated and a message is returned to the user's
terminal:

BISYNC PROCESSOR TERMINATED

The terminal that was assigned as the Bisync console is returned to LOGON and
is freed for other use.

Figure B shows an example of the ABORT-BSC verb. Figure" C shows an example of
the STOP-BSC verb.

ABORT-BSC

STOP-BSC

Figure A. ABORT-BSC and STOP-ESC Verb Formats

:ABORT"":BSC@

BISYNC PROCESSOR TERMINATED

Figure B. Example of ABORT-BSC Verb

: STO:p-BSC ... <IDi)

BISYNC PROCESSOR TERMINATED

Figure C. Example of STOP-BSC Verb

2.7

2.8 THE FILE-MESSAGE VERB

The FILE-MESSAGE verb moves messages out of the Bisync queue, and makes them
into items in a specified file.

The verb usage format is

:FILE-MESSAGE message-number (options)
TO: file-name [item-name]

Normally each record in the message becomes a different item in the file.
Item-id's are assigned numerically from ~~~l. No "item-name" need be entered
(indicated by brackets above).

Alternately, the 'I' option may be used to convert the message into one item.
Each line becomes one record.

Valid options are listed below; they are described in detail in the following
section.

T Process horizontal tabs
F Process vertical forms control
I File into one item
R Format Reality object code (I option gets set)
C Convert EBCDIC to ASCII (for transparent text)

The FILE-MESSAGE verb is normally used on received messages. It may, however,
be used on a message which has been placed in the Bisync queue of the trans-"
mitting system by the transmit verb.

Note that a message which is filed into an item cannot exceed the limit of
32,267 bytes.

FILE-MESSAGE message-number (Options)

TO: file-name [item-name]

Figure A. General Form of the FILE-MESSAGE Verb

FILE -., FILE -,. .

./
". FILE-MESSAGE /

/ "- (NOT NORMAL " FILE/MESSAGE ,
'\ USAGE) \

\ ' ...
BISYNC \ BISYNC
QUEUE I QUEUE

..... - .;

BISYNC LINK BISYNC
PROCESS PROCESS

(Reality to Reality)

Figure B. Function of the FILE-MESSAGE Verb

2.8

2.9 OPTIONS OF THE FILE-MESSAGE VERB

FILE-MESSAGE verb options allow tabs and vertical forms control, single-item
filing, EBCDIC to ASCII conversions, and formatting of items containing Re
ality assembler output.

T - Process Horizontal Tabs

If the message contains a tab format record as its first record and the message
records contain horizontal tab characters, tabbing will be done on the records
as they are filed by inserting an appropriate number of blanks between fields
in the record. If not specified, the tab characters will be left in the re
cords.

F - Process vertical Forms Control

If the records in the message begin with forms control characters, the appro
priate form and line feeds are inserted in the filed message. However, 'skip
to channel' commands will be treated as 'top of form'. If the F option is not
specified, the forms control characters are left at the beginning of the filed
records.

I - File Into One Item

When the I option is specified, the message is placed in one item in the file,
each record of the message becoming an attribute of the item. The records of
the message must not exceed a total of 32K bytes, the maximum item size. If
the message is too long, an error message is given to the operator, the item
being built is deleted from the file, and the message remains in the message
queue. This option will be used when filing received Reality object code. If
this option is not specified, the records in the message will be filed one to
an item within the file. The records will be given sequential numeric item-id's
as they are filed, starting from 0001.

R - Format Reality Assembler Output into File Item (also sets I option)

The R option is used when a frame of Reality assembler output has been received
as a message. The I option (file message into one item) is set whenever the R
option is specified. The Reality assembler output will be properly formatted
into an item so that it may be loaded into the system. This entails removing
pad characters (see Figure B) .

C - Convert EBCDIC to ASCII (used when filing transparent text)

The EBCDIC data in the received message is converted to ASCII before the data is
filed. This option should normally be specified unless it is known that the
message consists of ASCII data from another Reality system or hexadecimal data.

T Process horizontal tabs
F Process vertical forms control
I File into one item
R Format Reality assembler output into file item
C Convert EBCDIC to ASCII

Figure A. FILE-MESSAGE Options

:FILE"-ME;SSAGE0010{R) @ (Note: I not needed)
TO: MODESFORI\1AT2@

}
Done on
Transmitting
Reality System

Done on
10 MAR 1977 12:30:04 MESSAGE '0010' DELETED > Receiving

Reality System
:MLOAD MODES FORMAT,:2 <tID
MODE 'FORMAT2' LOADED; ..

Figure B. Sequence Showing Options for Transmitting
and Filing Assembler Output

: FILE-MESSAGEI846 (T,F ,C>@

TO :.~NvOICES> ..•• ~

DATE TIME MESSAGE '0004' DELETED

: FILE-MESSAGEOOO~J:r) @

TO: ~J)RESS:;"LISTBOSTON.i@

The message 1846 is placed
into the file INVOICES.
Tabbing, forms control, and
EBCDIC to ASCII conversion
are specified as options.

The message 0006 is placed
in the item BOSTON in the
ADDRESS-LIST file.

Figure C. Examples of the FILE-MESSAGE Verb

2.9

2.10 SPOOL-MESSAGE VERB

The SPOOL-MESSAGE verb is used to output a message via the Reality spooler.

The SPOOL-MESSAGE verb sends messages to the Reality output spooler a line at
a time. The ge"neral form is:

SPOOL-MESSAGE message-number (options)

Recognized options are S, H, C, and Z.

S - Suppress

The S option suppresses "tabs and forms control, and allows automatic paging.
This option should" be"" used if the received message does not contain imbedded
forms control characters. The message will then be automatically paged.

H - Hold Message in Message Queue

with the H option, the message is" printed but is not subsequentiy deleted from
the message queue; otherwise the message is automatically delet~d. This option
may be used for printing multiple copies of the message or for printing and
filing the same message. Note that this option is independent of the 'H' in
the SF-ASSIGN verb.

C - Convert EBCDIC to ASCII

The C option is available for use when printing a transparent text message.
This option is normally specified whEm printing transparent text.

Z - Spool Immediate

The Z option is used to begin output of a message to the Reali"ty output spooler
as soon as reception begins. It is advisable to assign the spooler via the
SP-ASSIGN verb for instant printing (I option) or direct output (N option) to
cause simultaneous spooling and despooling of the me~sage.

SPOOL-MESSAGE message-number (options)

S Suppress tabs and forms control
H Hold message in message queue
C Convert EBCDIC to ASCII
Z Instant spooling

Figure A. SPOOL-MESSAGE Verb and Options

MESSAGE '0256' DELETED

Message 0256, a transparent text
message, was printed after convert
ing the EBCDIC text to ASCII. Since
the H option was not specified, the
message was deleted from the Bisync
queue after printing. The message
started to print as it was being re
ceived. It will be held in the
spooler's queue due to the 'H' in
the SP-ASSIGN.

Figure B. Example of SPOOL-MESSAGE Verb

2.10

2.11 DISPLAY-MSG-QUE

The DISPLAY-MSG-QUE verb may be used to display the status of all messages
currently in the Bisync message queue.

The DISPLAY-MSG-QUE verb generates a list to the terminal of all messages in
the Bisync queue. The general form of the verb is:

DISPLAY-MSG-QUE

A line of information is generated for each message in the queue. This gen
erates a display with the following headings:

NAME ACCOUNT CHANNEL TIME DATE STATUS

The NAME is the identification number of the message which is automatically
assigned by the system. The identification number is in the range 0000 to
9999.

The ACCOUNT is the account the user was logged onto when the message was en
tered in the queue via the TRANSMIT verb. A received message will not have
an ACCOUNT field.

The CHANNEL is the line number of the terminal from which the message was en
tered into the queue via the TRANSMIT verb. A received message will not have
a CHANNEL field.

TIME is the time the message was entered into the queue via the TRANSMIT verb
or the time the message was received.

DATE is the date the message was put into the queue via the TRANSMIT verb, or
the date the message was received.

STATUS is displayed as a code indicating the current status of the message,
such as received, waiting to be transmitted, currently being transmitted, etc.
Figure B shows the possible status codes.

Figure C shows an example of the DISPLAY-MSG-QUE.

DISPLAY-MSG-QUE

Figure A. DISPLAY-MSG-QUE Verb Format

T Message is waiting to be transmitted
T* Message is currently being transmitted
R Message has been received
R* Message is currently being received
TH Message was partially transmitted when a condition

requiring operator intervention occurred (attended mode)
RH Message was partially received when a condition

requiring operator intervention occurred (attended mode)

Example

: DISPLAY-MSG-QUE@

BSC MESSAGE QUEUE

Figure B. Status Codes

10:03:30 11 MAR 1977

NAME ACCOUNT CHANNEL TIME DATE

0154 SYSPROG 0

0155

0156 ALICE

END OF QUEUE

Description

5

9:46:05

9:51:16

10:01:47

11 MAR 1977

11 MAR 1977

11 MAR 1977

PAGE 1

STATUS

T*

R

T

Message 0154 was entered into the queue from the terminal attached
to line 0 and logged onto the SYSPROG account at 9:46:05 on 11 MAR
1977, and is currently being transmitted. Message 0155 was received
at 9:51:16 on 11 MAR 1977, and has no ACCOUNT or CHANNEL associated
with it. Message 0156 was entered in the queue by user ALICE from
line 5 at 10:01:47 on 11 MAR 1977, and is waiting to be transmitted.

Figure C. Example of DISPLAY-MSG-QUE Verb

2.11

2.12 DUMP-MESSAGE, DISPLAY-MESSAGE AND KILL-MESSAGE VERBS

The DUMP-MESSAGE verb is used to examine a message on the Bisync queue in
hexadecimal. The DISPLAY-MESSAGE verb is used to display a message on the
Bisync queue in character format. The KILL-MESSAGE verb is used to delete
a message from the Bisync queue.

The general form of the DUMP-MESSAGE verb is:

DUMP-MESSAGE message-number {(P)}

output is in hexadecimal to the screen. If the (P) is included, output is in
hexadecimal to the printer. All line control characters are displayed. Figure
B shows an example of the DUMP-MESSAGE verb.

The general form of the DISPLAY-MESSAGE verb is:

DISPLAY-MESSAGE message-number

Output is in character format to the screen. If the mes~;age was transmitted
in transparent EBCDIC, the characters will be displayed in their EBCDIC equiv
alent, and the pad characters (for records less than 80 characters) will dis
playas @'s. Figure C shows examples of the DISPLAY-MESSAGE verb.

The general form of the KILL-MESSAGE verb is:

KILL-MESSAGE message-number

The specified message is delete from the Bisync queue. Figure D shows an ex
ample of the KILL-MESSAGE verb.

DUMP-MESSAGE message-number (P)

DISPLAY-MESSAGE message-number

KILL-MESSAGE message-number

Figure A. DUMP-MESSAGE, DISPLAY-MESSAGE, and KILL-MESSAGE
Verb Formats

.. ··;:;~~~ij}09·~5;.
MESSAGE '0025'

3232

02ClC2C3C4l9lF

3232

02C5C6C7C8l903

Message 0025 is dumped to the terminal
in hex, including all line control
characters.

Figure B. Example of DUMP-MESSAGE Verb

:bt£$1?:tA~.:'~SSAG~··.·0Q#40
QVHU@HK@BTICH@@@@@@@@@@@@@@-----1 t------ @@@@
RRWUP@FVYEBC@SAUE@@@@@@@@@@~ t------@@@@
IYEIUE@CAK@@@@@@@@@@@@@@@@@ ~ t------ @@@@
YRVXP@@@@@@@@@@@@@@@@@@@@@@----t ?-@@@@

:DISPLAY-MESSAGE 0005
JOHN H. SMITH
22750 FOREST LANE
IRVINE CA.
92680

Message number 0004 was transmitted in transparent EBCDIC.
Message number 0005 was transmitted in normal EBCDIC.

Figure C. Examples of DISPLAY-MESSAGE Verb

30 MAR 1977 15:52:41 MESSAGE '0005' DELETED

Figure D. Example of KILL-MESSAGE Verb

2.12

2.13 DATA LINK CONTROL CHARACTERS

Knowledge of the data link control characters and timeouts is not essential to
the use of Bisync. You may wish to resume reading with Chapter 3.

Bisync uses a set of control character sequences to maintain control of the data
link. These control character sequences are discussed in the following pages
with respect to their usage in 2780 Protocol.

Line control is maintained via a set of control character sequences that have
a predefined meaning for Bisync. The control character sequences may consist
of a single data link control character or a two-character data link control
sequence. A single control character's meaning may change when it is combined
with another character, a DLE. These control characters and sequences are
described in detail in this and the following pages. Figure A shows a list of
the line control characters.

Transparent Mode Control Characters

When transmitting data in the transparent mode, all data link control charac
ters are preceded with a DLE control character to identify them as being con
trol characters. Figure B shows some examples of transparent control charac
ters.

BCC - Block Check Character

Bisync uses a cyclic redundancy check (CRC) as a means of detecting transmis
sion errors in data. Reality Bisync uses the CRC-16 for 8-bit transmission
codes. The message block that is to be transmitted is treated as one long
binary number, which is divided by a constant 16-bit binary number. The 16-
bit remainder is referred to as the BCC and is transmitted following an ITB,
ETB, or ETX. The receiving station divides the received block by the known
16-bit number. If the remainder it generates is the same as the BCC received,
the block is assumed to have been received correctly. The BCC is transmitted
as two characters (16 bits) but is functionally one sequence. The polynomial
used as the divisor is:

Pad Character (FF)

Pad characters are used in Bisync to ensure that the last characters of a
transmission are properly transmitted by the data set. A pad character also
follows a NAK (negative acknowledgment) to ensure that a transmission line
error doesn't change a positive response (ACK characters) to a negative re
sponse. The trailing pad character must be alII bits (a hex FF) .

CONTROL CHARACTER CODE
(EBCDIC STANDARD) (HEXADECIMAL) DESCRIPTION

ACKO 1070 positive Acknowledgment
ACKI 1061 positive Acknowledgment
DLE 10 Data Link Escape
DLE EOT 1037 Disconnect
ENQ 2D Enquiry
EM 19 End of Media
EOT 37 End of Transmission
ESC 27 Escape
ETB 26 End of Text Block
ETX 03 End of Text
HT 05 Horizontal Tab
ITB IF Intermediate Text Block
NAK 3D Negative Acknowledgment
PAD FF Pad Character
RVI 107C Reverse Interrupt
SOH 01 Start of Heading
STX 02 Start of Text
SYN 32 Synchronous Idle
TTD 022D Temporary Text Delay
WACK 106B Wai t Before 'rransmi t

Positive Acknowledgment

Figure A. Summary of Data-Link Control Characters

CONTROL
CHARACTER

DLE ETB
DLE ITB
DLE STX

CODE
(EBCDIC)

1026
103D
1002

DESCRIPTION

End of Text Block
Negative Acknowledgment
Start of Text

Figure B. Examples of Transparent Text Control Characters

(0)
(1)

2.13

2.14 DATA-LINK CONTROL CHARACTERS - TRANSMISSION CONTROL

Data-link control characters are used to initiate a transmission enquiry,
disconnect, and control various other transmission activities.

SYN - Synchronous Idle

The SYN character is used to establish and maintain synchronization of the
data link. Each transmission must be preceded with at least two SYN charac
ters. Three SYN characters will precede a 2780 transmission, and a minimum
of two are requir"ed to obtain synchroni za tion when in receive mode.

ENQ - Enquiry

The ENQ character is used to bid for the line, to request a response, to indi
cate an I/O error, or to obtain a repeat transmission of a reply if one was
not received when expected.

ACKO/ACKl - Affirmative Acknowledgment

These replies, in proper sequence, indicate that the previous block of data
was received without error and the receiver is ready to accept the next block.
ACKO and ACKl are alternated for each block of data. ACKO is also the positive
response to selection (multipoint) or line bid (point-to-point).

NAK - Negative Acknowledgment

NAK is used to indicate that an error was detected while receiving the last
block of data and requests a retransmission of that block.

WACK - Wait Before Transmit Positive Acknowledgment

WACK is used as a positive acknowledgment to a block of data, but indicates
that the receiving station is not yet ready for another block of data. This
response causes a reset of the ENQ count at the transmitting terminal so that
a timeout (usually after three ENQ's) does not occur. A 2780 will accept a
WACK but will not transmit a WACK.

RVI - Reverse Interrupt

RVI is a positive response used in place of an ACKO/ACKl by a receiving sta
tion. It is used by a receiving station to request termination of the present
transmission due to a high priority message it must transmit to the sending
station. The transmitting station responds by transmitting any data in its
I/O buffer that prevents it from becoming a receiving station and goes into
the receive mode. In a multipoint environment, an RVI may indicate that the
control station (when receiving) wishes to communicate with another station
on the line. A 2780 will accept but not transmit an RVI.

TTD - Temporary Text Delay

The TTD control sequence is sent by a sending station while transmitting when
it wishes to retain control of the line but is not ready to transmit. The
receiving station replies with a NAK and waits for transmission to begin.
This sequence can be repeated. TTD is also sent by a transmitting station
to indicate to the receiver that it is aborting the current transmission.
After the receiving station responds with a NAK, the transmitting station
sends an EOT (end of transmission) .

DLE EOT - Disconnect

The DLE EOT character is sent by a terminal on a switched (dial-up) line to
indicate that it is "hanging-up" the line.

CONTROL CODE
CHARACTER (EBCDIC) DESCRIPTION

SYN 32 Synchronous Idle
ENQ 2D Enquiry
ACKO/ACKl 1070/1061 Affirmative Acknowledgment
NAK 3D Negative Acknowledgment
WACK lO6B Wait Before Transmit

Positive Acknowledgment
RVI 107C Reverse Interrupt
TTD 022D Temporary Text Delay
DLE EOT 1037 Disconnect

Figure A. Data-Link Transmission Control Characters

2.14

2.15 DATA-LINK CONTROL CHARACTERS - TEXT CONTROL

Data-link control characters are used to signal beginnings and sendings of
data text.

SOH - Start of Heading

SOH precedes a block of heading characters. A heading consists of auxiliary
information such as routine and priority. Although 2780 does not use headings,
it will accept an SOH and treat it as an STX (start of text) to allow operation
on the same line with a terminal using headings.

STX - Start of Text

The STX character precedes a block of text (data) characters and signals the
receivirig terminal that the text portion of the message will follow.

ETB - End of Transmission Block

ETB is transmitted at the end of the last record of a block of text data, ex
cept for the last block. The last block is ended with an ETX (end of text) .
ETB causes block checking with a line turnaround and a response from the re
ceiving terminal. A block check character sequence immediately follows the
ETB. If retransmission of the block is required, all data framed by the ETB
and the previous STX is retransmitted.

ETX - End of Text

ETX ends the last block of data in a message. It indicates the end of a com
plete message. The block check character sequence is sent immediately follow
ing the ETX. If retransmission is required, all data framed by the ETX and
the preceding STX will be retransmitted.

EOT - End of Transmission

EOT is sent by a transmitting terminal to indicate that it has no more mes
sages to transmit. EOT is sent after a positive response to the last block
of data is received. An ETX must have ended the last block of data sent, or
the receiving terminal will indicate an error when it receives the EOT.

EOT is also used as a response to a poll when the polled station has nothing
to transmit, and as an abort signal to indicate a system malfunction or op
erational situation that precludes further transmission or reception.

CONTROL CODE
CHARACTER (EBCDIC) DESCRIPTION

SOH 01 Start of Heading
STX 02 Start of Text
ETB 26 End of Transmission Block
ETX 03 End of Text
EOT 37 End of Transmission

Figure A. Data-Link Text Control Characters

2.15

2.16 DATA-LINK CONTROL CHARACTERS·- MISCELLANEOUS

The ITB and DLE characters described in this section are data-link control
characters. The other characters described are not actual data-link control
characters, but have special meanings when used in a specific sequence.

ITB - End of Intermediate Text Block

The ITB character is transmitted at the end of each record when ~ransmitting
fixed length records, except for the last record in a block. The last record
is ended with an ETBor ETX. ITB is used to divide a message for error check
ing purposes without causing line turnaround and an answerback to the trans
mitting terminal. A block check character sequence is sent immediately fol
lowing the ITB.

EM - End of Media

EM is used to indicate the end of a record when transmitting variable length
records. The EM is immediately followed by an ITB and a block check character,
except for the last record of a block. The last record of a block will have
an EM followed by an ETB or ETX.

DLE - Data Link Escape

DLE is a control character used to provide supplementary line control charac
ters (e.g., WACK, ACKO/ACK1) and transparent mode control characters. When
transmitting in the transparent mode, control characters are preceded by a
DLE (e.g., DLE STX, DLE ITB, DLE ENQ). If a data character of DLE is sent
in the transparent mode, it is sent as DLE DLE. One of the DLE's is disre
garded and the other is treated as data.

ESC - Escape

The ESC character and the character following form a two-character component
selection or printer forms control sequence. Reality accepts the ESC sequence
as printer forms control. The ESC sequence must be the first two characters
in the record when transmitting or receiving.

HT - Horizontal Tab

The HT character is a tab character and is used in three ways. When HT follows
the ESC character at the beginning of a record, it signifies that the record
is a printer horizontal format control record. An HT within a printer hori
zontal format control record sets a tab stop for the printer. An HT in records
following the printer control record causes a tab to the next tab stop that
was set by the printer control record.

CONTROL
CHARACTER

ITB
EM
DLE
ESC
HT

CODE
(EBCDIC)

lF
19
10
27
05

DESCRIPTION

End of Intermediate Text Block
End of Media
Data Link Escape
Escape
Horizontal Tab

Figure A. Data-Link Miscellaneous Control Characters

2.16

2.17 TIMEOUTS

Timeouts are used to prevent indefinite data-link tie-ups due to false
sequences or missed turnaround signals by providing a fixed time within which
any particular operation must occur. The four timeout functions provided are
transmit, receive, disconnect and continue.

Transmit Timeout

This is a nominal one-second timeout that establishes the rate at which sync
idle char.acters are inserted into text data. In normal data, two consecutive
sync idle characters (SYN SYN) are inserted every second. In transparent mode,
one transparent sync idle sequence (DLE SYN) is inserted every second. Sync
idle characters are inserted in the message for timing purposes only and have
no effect on the message format.

Receive Timeout

This is a three-second timeout and is used to limit the waiting time tolerated
for a transmitting station to reply. It also permits the receiving station to
check the line for sync idle signals which indicate that the transmission is
continuing. In a mUltipoint network, the receive timeout is also used to limit
the time a secondary station remains in control mode while monitoring the line
for its address code.

Disconnect Timeout

This timeout is used on switched network data links. It is a 20 second timeout
used to prevent a station holding a connection for prolonged periods of inac
tivity. After 20 seconds of inactivity, the station will disconnect from the
switched network. If one of the stations on the data link is extremely busy
with other processes, it may not respond within the given 20 seconds. An option
is available on some devices (i.e., 2780) to extend this timeout to 45 seconds.
Reality has a standard disconnect timeout of 45 seconds, and may be set higher
if required.

Continue Timeout

This is a two second timeout associated with the transmission of TTD and WACK.
It is used by stations where the speed of input or output devices affect buffer
availability and may cause transmission delays. The purpose of the continue
timeout is to permit the stations to send an appropriate affirmative reply if
it is not able to receive within the two second interval.

This page intentionally blank

2.17

3.1 MODEMS

Modems (data sets) are required at each end of a communications network to
interface with the data link.

An important consideration in installing Bisync on Reality is the choice of a
modem with the options Reality Bisync requires. A variety of modems are avail
able from telephone companies and independent suppliers.

Reality Bisync, operating in a 2780
duplex (simultaneous send/receive).
2-wire or 4-wire half-duplex.

emulation mode, does not support true full
The communications link may be set up for

Regardless of the modem supplier or the physical arrangement of the communi
cations link, the following modem options are required:

1. Grounding option - AB connected to AA.

2. Transmitter timing provided by the data set (internal).

3. Automatic answer (not required for private line, but desirable if
offered with modem) .

4. Interface of data terminal ready - EIA.

5. Electrical interface of ring indicator - EIA.

6. Line turnaround (request-to-send, clear-to-send) delay MUST be 150
milliseconds.

7. Carrier control - for a private line setup, it may be necessary to
select switched carrier in order to get the required 150 millisecond
delay.

The 150 millisecond line turnaround delay is essential. In many cases, this
will determine whether or not a particular modem is acceptable or what other
options are available or required on the modem. Figure A shows some of the
Bell modems that may be used with Reality Bisync. It should be noted that
standard 2780 protocol will not support baud rates higher than 4800 bps. This
is not a limitation for Reality, and may be desirable for Reality-to-Reality
communications.

There are two options offered on some of the BELL modems that Reality Bisync
will not support. These are:

1. New Sync - usually applicable to a multipoint environment only.
2.' Automatic calling unit.

If using a modem supplier other than the telephone companies, a DAA (Data
Access Arrangement) must be ordered from the telephone company. There are
two types of DAA's:

1. CBS -'uses digital logic.
2. CBT - uses relays and contact closures.

Either of these are acceptable, but the CBS is preferable and there is very
little difference in price.

Model No. BPS Description

201A 2000 Dial-up

201B 2400 Private

201C 2000 Dial-up
2400 Dial-up or Private

208B 4800 Dial-up

209A 9600 Private

Figure A. Some Bell Modems

CBS Digital Logic

CBT Relays and Contact Closures

Figure B. Data Access Arrangements (DAA's)

3.1

4.1 EXAMPLE: TRANSMITTING A REALITY FILE

STEP 1 The Bisync Processor was started on line one in the unattended mode
of operation.

STEP 2 The initiation message was returned on the terminal connected to line
one.

STEP 3 All the items (five of them) in the ACCOUNTS file were structured into
a message and entered in the message queue as message 0001.

STEP 4 The operator called the computer which will receive the message and
placed the data phone_in DATA after the connection had been made.
The communications-line-enabled message was returned to the Bisync
terminal.

STEP 5 After transmission of message 0001 had begun, the transmission message
was returned to the Bisync terminal.

STEP 6 While the message was being transmitted, the operator entered the
STOP-BSC verb, terminating the Bisync Process at the end of the job.

STEP 7 After completion of the message transmission, the transmission sta
tistics were returned to the Bisync terminal. The number of blocks
transmitted and received, and the number of retransmissions were
listed. Message 0001 was then deleted from the message queue.

STEP 8 The Bisync Process, seeing that the STOP-BSC verb had been executed,
d~sconnected the line and deactivated itself after transmitting mes
sage 0001.

STEP 1

: START-SSC 'l~
01 NOV 1975 13:49:09 BISYNC PROCESSOR INITIATED

STEP 3

: TRANSMIT • ACCe)"CJNTS*tBl)
1267
54862
7914
7902
980002
MESSAGE '0001' ENTERED IN QUEUE

STEP 6

:STOP-SSC@
01 NOV 1975 14:02:15 BISYNC PROCESSOR TERMINATED

Figure A. Operator's Display

STEP 2

:01 NOV 1975 13:49:09 BISYNC PROCESSOR INITIATED

STEP 4

01 NOV 1975 14:01:54 BISYNC COMMUNICATIONS LINE ENABLED

STEP 5

01 NOV 1975 14:02:04 0001 SYSPROG 00 13:50:05 01 NOV 1975 T*

STEP 7

01 NOV 1975 14:03:21 11 BLOCKS TRANSMITTED
01 NOV 1975 14:03:21 11 BLOCKS RECEIVED
01 NOV 1975 14:03:21 o TRANSMISSION ERRORS
01 NOV 1975 14:03:22 MESSAGE TRANSMISSION COMPLETE
01 NOV 1975 14:03:23 MESSAGE '0001' DELETED

STEP 8

01 NOV 1975 14:03:23 BISYNC COMMUNICATIONS LINE DISCONNECTED
BISYNC PROCESSOR INACTIVE

LOGON PLEASE:

Figure B. Bisync Console Display

4.1

4.2 EXAMPLE: RECEIVING A REALITY FILE

STEP 1 The Bisync Process was started on line one in the unattended mode.

STEP 2 The initiation message was returned on the Bisync Process' terminal.

STEP 3 Assuming that the data phone was in AUTO, several minutes later a
call was received and the communication line enabled.

STEP 4 Message 0002 was received. There were 113 blocks received with two
retransmissions.

STEP 5 After waiting 48 seconds without receiving anything else, the Bisync
Process disconnected the line.

STEP 6 The operator deactivated the Bisync Process using theSTOP-BSC verb.

STEP 7 The STOP-BSC verb cleared wait for a call state in the Bisync Pro
cess. The Process saw that the line was disconnected and that the
STOP command had been issued, so the Process deactivated itself,
and returned to logon.

STEP 8 The operator then filed the received message in the RECEIVED-INVOICES
file.

STEP 1

:$l'AR~~as:c··l@
01 NOV 1975 14:55:02 BISYNC PROCESSOR INITIATED

STEP 6

:~fuo~~~sCai
01 NOV 1975 15:16:23 BISYNC PROCESSOR TERMINATED

STEP 8

Figure A. Operator's Display

STEP 2

:01 NOV 1975 14:55:02 BISYNC PROCESSOR INITIATED

STEP 3

01 NOV 1975 15:01:36 BISYNC COMMUNICATIONS LINE ENABLED

STEP 4

01 NOV 1975 15:01:42 0002 15:01:42 01 NOV 1975 R*
01 NOV 1975 15:07:16 112 BLOCKS TRANSMITTED
01 NOV 1975 15:07:16 113 BLOCKS RECEIVED
01 NOV 1975 15:07:16 2 TRANSMISSION ERRORS
01 NOV 1975 15:07:17 MESSAGE TRANSMISSION COMPLETE

STEP 5

01 NOV 1975 15:08:05 BISYNC COMMUNICATIONS LINE DISCONNECTED

STEP 7

01 NOV 1975 15:16:23 BISYNC COMMUNICATIONS LINE ENABLED
01 NOV 1975 15:16:23 BISYNC COMMUNICATIONS LINE DISCONNECTED

BISYNC PROCESSOR INACTIVE

LOGON PLEASE:

Figure B. Bisync Console Display

4.2

4.3 EXAMPLE: TRANSMITTING REALITY ASSEMBLER OUTPUT

STEP 1 The STRIP verb was used to strip off the source code from the frame
of code DBI. When transmitting Reality code, the operator should
insure that the first five lines of the frame are comments to pre
clude the possibility of source code being lost when the lines of
code are truncated to 80 characters, since the STRIP verb does not
affect the first five lines of code in the frame.

STEP 2 The stripped frame of code was then structured into a transparent
ASCII text transmission message.

STEP 3 The operator then started the Bisync Process with the START-BSC verb.

STEP 4 The initialization message was returned to the Bisync Process terminal.

STEP 5 After the line connection was made, the message was transmitted.

STEP 6 After transmitting its message, the Bisync Process went into the re
ceive state. Since nothing was received within 48 seconds, the Pro
cess disconnected the line.

STEP 1

: $TlUP SiS1-Et-i4MODESoIiI,.
DESTINATION: HOLD

STEP 2

TRANSMIT HOLD DBI (T)
MESSAGE '0003' ENTERED IN QUEUE

STEP 3

:START"'BSCl~
01 NOV 1975 15:30:00 BISYNC PROCESSOR INITIATED

Figure A. Operator's Display

STEP 4

:01 NOV 1975 15:30:00 BISYNC PROCESSOR INITIATED

STEP 5

01 NOV 1975 15:32:56 BISYNC COMMUNICATION LINE ENABLED
01 NOV 1975 15:33:01 0003 SYNPROG 00 15:25:13 01 NOV 1975
01 NOV 1975 15:36:50 52 BLOCKS TRANSMITTED
01 NOV 1975 15:36:50 52 BLOCKS RECEIVED
01 NOV 1975 15:36:50 o TRANSMISSION ERRORS
01 NOV 1975 15:36:51 MESSAGE TRANSMISSION COMPLETE

STEP 6

T*

01 NOV 1975 15:37:39 BISYNC COMMUNICATIONS LINE DISCONNECTED

Figure B. Bisync Console Display

4.3

4.4 EXAMPLE: RECEIVING REALITY ASSEMBLER OUTPUT

STEP I The Bisync Process was started on line one by the operator.

STEP 2 The initialization message was returned to the BisynG Process' ter
minal.

STEP 3 After the line connection was made, message 0004 was received.

STEP 4 Since the operator knew the frame DBI was received, he first de
leted the old DBI from the SYSTEM-MODES file using the EDTTOR.

STEP 5 The message was then filed into SYSTEM-MODES DBI using the R option
(file Reality object code) of the FILE-MESSAGE verb.

STEP 1

:j:~~~f~~~~T~;j.
01 NOV 1975 15:52:26 BISYNC PROCESSOR INITIATED

STEP 4

:~tj::S:¥:~ill$~tMeiD1:i .:DBI~

DBI DELETED

STEP 5

: FttElf',

Figure A. Operator's Display

STEP 2

:01 NOV 1975 15:56:26 BISYNC PROCESSOR INITIATED

STEP 3

01 NOV 1975 15:59:30 BISYNC COMMUNICATIONS LINE,ENABLED
01 NOV 1975 15:59:45 0004 15:59:45 01 NOV 1875 R*
01 NOV 1975 16:05:02 52 BLOCKS TRANSMITTED
01 NOV 1975 16:05:02 53 BLOCKS RECEIVED
01 NOV 1975 16:05:03 o TRANSMISSION ERRORS
01 NOV 1975 16:05:03 MESSAGE TRANSMISSION COMPLETE
01 NOV 1975 16:05:25 BISYNC COMMUNICATIONS LINE DISCONNECTED

Figure B. Bisync Console Display

4.4

4.5 EXAMPLE: OPERATING WITH JCL: Transmitting a Ditto Job to an IBM 360
Operating Under DOSIPower

Assume there is a file called JOB-CONTROL and this file contains two items,
LOGON and LOGOFF:

LOGON

001 * RJSTART MICRO
002 * LOGON MICRO
003 * $$ JOB DITTO
004 * $$ PRT H
005 * $$ PUN H
006 II JOB DITTO
007 II UPSI 1
008 II EXEC DITTO
009 $$DITTO CPU

LOGOFF

001 1*
002 $$DITTO EOJ
003 * $$ EOJ
004 * LOGOFF
005 * RJEND

STEP 1 The operator started the Bisync Process on line one.

STEP 2 The initialization message was returned on the Bisync Process' ter
minal.

STEP 3 The logon job control cards were entered in the message queue.

STEP 4 All the items in the DATA file, the data which is to be dittoed, was
entered in the message queue.

STEP 5 The logoff job control cards were entered in the message queue.

STEP 6 The job was sent to the IBM 360. The operator disconnected the line,
waiting for the job to be run.

STEP 1

... :~.
01 NOV 1975 16:20:02 BISYNC PROCESSOR INITIATED

STEP 3

:T~Sl<lJ:.T.··.~QBqJcWTRa~#~~·.· ••.•• ·.(r!)iG
MESSAGE· '0005' ENTERED IN QUEUE

STEP 4

: TRANSMIT DATA *(F)@
1034
92685

28
4678
MESSAGE '0006' ENTERED IN QUEUE

STEP 5

:~~~~;~:'~9~~q()ij~~Qj-j;1'#~!~i;)~~~.
MESSAGE '0007' ENTERED IN QUEUE

Figure A. Operator's Display

STEP 2

:01 NOV 1975 16:20:02 BISYNC PROCESSOR INITIATED

STEP 6

01 NOV 1975 16:27:15 BISYNC COMMUNICATIONS LINE ENABLED
01 NOV 1975 16:27:20 0005 SYSPROG 00 16:20:56 01 NOV 1975 T*
01 NOV 1975 16:28:32 3 BLOCKS TRANSMITTED
01 NOV 1975 16:28:32 3 BLOCKS RECEIVED
01 NOV 1975 16:28:32 o TRANSMISSION ERRORS
01 NOV 1975 16:28:33 MESSAGE TRANSMISSION COMPLETE
01 NOV 1975 16:28:35 MESSAGE '0005' DELETED
01 NOV 1975 16:28:40 0006 SYSPROG 00 16:23:10 01 NOV 1975 T*
01 NOV 1975 16:40:16 242 BLOCKS TRANSMITTED
01 NOV 1975 16:40:16 243 BLOCKS RECEIVED
01 NOV 1975 16:40:16 12 TRANSMISSION ERRORS
01 NOV 1975 16:40:17 MESSAGE TRANSMISSION COMPLETE
01 NOV 1975 16:40:26 MESSAGE '0006' DELETED
01 NOV 1975 16:40:31 0007 SYSPROG 00 16:28:14 01 NOV 1975 T*
01 NOV· 1975 16:41:02 2 BLOCKS TRANSMITTED
01 NOV 1975 16:41:02 2 BLOCKS RECEIVED
01 NOV 1975 16:41:02 o TRANSMISSION ERRORS
01 NOV 1975 16:41:03 MESSAGE TRANSMISSION COMPLETE
01 NOV 1975 16:41:05 MESSAGE '0007' DELETED
01 NOV 1975 16:41:26 BISYNC COMMUNICATION LINE DISCONNECTED

Figure B. Bisync Console Display

4.5

4.6 EXAMPLE: OPERATING WITH JCL: Receiving a Ditto Job From an IBM 360
Operating Under DOS/Power

Assume there is a file called JOB-CONTROL and this file contains two items,
OUTPUT and LOGOFF.

OUTPUT

001 *
002 *
003 *

RJSTART MICRO
LOGON MICRO
OUTPUT ALL

LOGOFF

001 *
002 *

LOGOFF
RJEND

STEP 1 The operator started the Bisync Process on line one.

STEP 2 The initialization message was returned on the Bisync Process' ter
minal.

STEP 3 The operator then entered the output job control cards in the mes
sage queue.

STEP 4 The line connection was then made and the output cards sent to the
360.

STEP 5 Upon receiving the output cards, the 360 transmitted the results of
the previous ditto job.

STEP 6 While receiving the ditto job, the operator entered the logoff cards
in the message queue. This must be done while receiving the output.
Otherwise, if the logoff is placed in the queue at the same time as
the logon, the logoff cards would be transmitted before receiving the
output, aborting the job on the 360.

STEP 7 The logoff cards were then transmitted after receiving the output.

STEP 8 The operator then filed the received message in the ACCOUNTS file.

STEP 1

:START"".SC lc:B)
01 NOV 1975 17:35:53 BISYNC PROCESSOR INITIATED

STEP 3

:··~~$iji:i;r.·~p:a";C:O~/ft{OL: •. OtJ'l;'PU~'.· (~)a>
MESSAGE i 0008' ENTERED IN' QUEUE" .

STEP 6

:TRANSMIT JOB-CONTROL LOGOFF (F>@
MESSAGE '0010' ENTERED IN QUEUE

STEP 8

~~~~~~:~d09~ 

Figure A. Outgoing Display 

STEP 2 

:01 NOV 1975 17:35:53 BISYNC PROCESSOR INITIATED 

STEP 4 

01 NOV 1975 17:38:10 BISYNC COMMUNICATIONS LINE ENABLED 
01 NOV 1975 17:38:15 0008 SYSPROG 00 17:36:15 01 NOV 1975 
01 NOV 1975 17:38:58 1 BLOCKS TRANSMITTED 
01 NOV 1975 17:38:58 1 BLOCKS RECEIVED 
01 NOV 1975 o TRANSMISSION ERRORS 
01 NOV 1975 17:38:58 MESSAGE TRANSMISSION COMPLETE 
01 NOV 1975 17:39:00 MESSAGE '0008' DELETED 

STEP 5 

01 NOV 1975 17:39:07 0009 17:39:07 01 NOV 1975 R* 
01 NOV 1975 17:51:36 236 BLOCKS TRANSMITTED 
01 NOV 1975 17:51:36 237 BLOCKS RECEIVED 
01 NOV 1975 17:51:37 6 TRANSMISSION ERRORS 
01 NOV 1975 17:51:38 MESSAGE TRANSMISSION COMPLETE 

STEP 7 

T* 

01 NOV 1975 17:51:42 0010 SYSPROG 00 17:42:26 01 NOV 1975 T* 
01 NOV 1975 17:52:03 1 BLOCKS TRANSMITTED 
01 NOV 1975 17:52:03 1 BLOCKS RECEIVED 
01 NOV 1975 17:52:03 o TRANSMISSION ERRORS 
01 NOV 1975 17:52:03 MESSAGE TRANSMISSION COMPLETE 
01 NOV 1975 17:52:05 MESSAGE '0010' DELETED 
01 NOV 1975 17:52:26 BISYNC COMMUNICATIONS LINE DISCONNECTED 

Figure B. Incoming Display 

4.6 



4.7 EXAMPLE: OPERATING IN THE ATTENDED MODE 

STEP 1 The Bisync Process was started on line 1 in the attended mode. 

STEP 2 The communications line was enabled and reception of message 0009 began. 
A line failure occurred and the line was disconnected. Operator inter
vention was requested because Bisync was started in the attended mode. 

STEP 3 Bisync was restarted without the N option (new start) so message 0009 
was not deleted. 

STEP 4 The communications line was enabled and reception of message 0009 
restarted. The blocks received were appended to the first 4 blocks of 
message 0009 that were received. 

STEP 5 After message reception was complete, the Bisync Process disconnected 
the line after 48 seconds as no further reception or transmission 
occurred. The terminal attached to line 1 was returned to logon. 



STEP 1 

:$:;Iii'~~~G':,t '(J:);L[~ 

STEP 3 

:~a¥l~i~~~'~i,J<. 
01 APR 1977 17:45:02 BISYNC PROCESS RESTARTED 

Figure A. Operator's Display 

01 APR 1977 17:35:53 BISYNC PROCESSOR INITIATED 

STEP 2 

01 APR 1977 17:39:05 BISYNC COMMUNICATIONS LINE ENABLED 
01 APR 1977 17:39:09 0009 17:39:09 01 APR 1977 R* 
01 APR 1977 17:40:10 *** LINE FAILURE *** 
01 APR 1977 17:40:10 20 BLOCK TRANSMITTED 
01 APR 1977 17:40:11 19 BLOCKS RECEIVED 
01 APR 1977 17:40:12 1 TRANSMISSION ERRORS 
01 APR 1977 17:40:13 BISYNC COMMUNICATIONS LINE DISCONNECTED 
01 APR 1977 17:40:14 OPERATOR INTERVENTION REQUIRED 

01 APR 1977 17:42:02 BISYNC PROCESSOR RESTARTED 

STEP 4 

01 APR 1977 17:44:02 BISYNC COMMUNICATIONS LINE ENABLED 
01 APR 1977 17:44:06 0009 17:46:06 01 APR 1977 R* 
01 APR 1977 17:51:02 92 BLOCKS RECEIVED 
01 APR 1977 17:52:02 92 BLOCKS TRANSMITTED 
01 APR 1977 17:52:02 0 TRANSMISSION ERRORS 
01 APR 1977 17:52:05 MESSAGE TRANSMISSION COMPLETE 

STEP 5 

01 APR 1977 17:52:53 BISYNC COMMUNICATIONS LINE DISCONNECTED 

BISYNC PROCESSOR INACTIVE 
LOGON PLEASE: 

Figure B. Bisync Console Display 

4.7 



5.1 TROUBLESHOOTING 

When transmitting or receiving, the Bisync Process returns various messages 
on the Bisync console. The information contained in these messages can be 
used to troubleshoot if problems occur with Bisync. 

When transmitting data, the number of blocks received is a count of all blocks 
transmitted and any retrys that were necessary. The number of blocks received 
shows the count of all responses, whether positive (ACKO/ACKl) or negative 
(NACK). Also contained in this count is the number of timeouts. 

When in the receive mode, the number of blocks received shows the count of 
blocks received and any timeouts. The transmit count shows the count of all 
responses. 

If the receive count is higher than the transmit count, timeouts are occurring. 
This could be caused by line turnaround occurring before one of the stations is 
ready. The most common cause of this is the installation of modems that do not 
h&ve a 150 millisecond delay in turnaround time (see Section 3.1 on Modems) . 

If it appears that Reality is loosing data when receiving, the user should note 
any error conditions that occurred, number of blocks transmitted and received, 
number of transmission errors and any other pertinent information. If Bisync 
was running in the attended mode and an abnormal condition (such as a line 
failure) interrupted transmission, the user should check with the other station 
to see if retransmission was from the beginning of the message or from the 
point of interruption. If it was from the point of interruption, it will be 
necessary to run Bisync in the attended mode. When Bisync is running in the 
unattended mode and an abnormal condition interrupts transmission, a partially 
received message will be retransmitted from the beginning. When Bisync is 
running in the attended mode, the user has the option of saving a partially 
received message and restarting transmission of a partially transmitted message 
from the point of interruption. 



:01 APR 1977 16:20:02 BISYNC PROCESSOR INITIATED 

01 APR 1977 16:27:15 BISYNC COMMUNICATIONS LINE ENABLED 

01 APR 1977 16:28:40 0006 SYSPROG 00 16:23:10 01 APR 1977 T* 

01 APR 1977 16:40:16 242 BLOCKS TRANSMITTED 

01 l;\PR 1977 16:40:16 265 BLOCKS RECEIVED 

01 APR 1977 16:40:16 12 TRANSMISSION ERRORS 

01 APR 1977 16:40:17 MESSAGE TRANSMISSION COMPLETE 

01 APR 1977 16:40:26 MESSAGE '0006' DELETED 

01 APR 1977 16:41:26 BISYNC COMMUNICATION LINE DISCONNECTED 

In this transmission sequence, 12 blocks had to be retransmitted and 
there were 23 timeouts. 

Figure A. Transmission Counts 

5.1 



~--------------------------------~------~~----~====----~~~-=----~ 

Microdata CorRoration 
17481 Red Hill Avenue, Irvine, California 92714 
Post Office Box 19501 , Irvine, California 92713 
Telephone : 714/540-6730 . TWX : 910-595-1764 


